1.	(a)	resistors in series add to 20 Ω and current is 0.60 A accept potential divider stated or formula	B1
		so p.d. across XY is 0.60 × 12 (= 7.2 V)	
		gives (12 /20) × 12 V (= 7.2)V	B1
	(b)	(i) the resistance <u>of the LDR</u> decreases	M1
		(so total resistance in circuit decreases) and current increases	A1
		(ii) resistance of <u>LDR and 12 Ω</u> (in parallel)/ <u>across XY</u> decreases	B1
		so has smaller share of supply p.d. (and p.d. across XY falls)	
		alternative I increases so p.d. across 8.0 Ω increases; so p.d. across XY falls	
			B1

2. (a) Line crosses 'y-axis' at 1.4 (V) / V = E or 1.4(V) when I = 0V = E - Ir; since I = 0 (Hence V = E or 1.4(V))

(b)	(i)	(Graph extrapolated to give) current = 2.0 (A)	
		(Allow tolerance $\pm 0.1A$)	B1

(ii)	$E = I_{(\max)} r$	gradient = r (Ignore	sign)	C1
	$(r = \frac{1.4}{2.0})$	(Attempt made to fin	nd gradient)	
	$r=0.7(0)~(\Omega)$	$r = 0.7(0) \left(\Omega\right)$	(Possible ecf)	A1

(iii) (excessive) heating of <u>cell</u> / energy wasted <u>internally</u> / cell might 'explode' / <u>cell</u> goes 'flat' (quickly) B1

[5]

[6]

B1

No current (in circuit) / 'open' circuit / p.d. between X and Y is 5.0 V 3. (a)

(b)
$$V = \frac{R_2}{R_1 + R_2} \times V_0$$
 / $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ / $I = \frac{3.4}{168} (=2.02) \times 10^{-2} \text{ mA}$ C1

$$3.4 = \frac{168}{168 + R} \times 5.0 \quad / \quad \frac{1.6}{3.4} = \frac{R}{168} \quad / \quad R = \frac{1.6}{2.02 \times 10^{-2}}$$
C1

resistance $\approx 79 \text{ (k}\Omega)$ (Total resistance of 250 k Ω scores 2/3) A1

4. B1 Energy (transformed by a device working) at 1 kW for 1 hour (a) $E = Pt / 5.8 = 0.12 \times \text{time} / (\text{time} =) 48.3 (\text{hr})$ C1 (b) (time =) $1.74 \times 10^5 \approx 1.7 \times 10^5$ (s) A1

5.	(a)	(i)	Correctly selected and re-arranged: $\rho = RA/L$;	M1
			symbols defined: $A = \underline{cross-sectional}$ area, $R = resistance$, $L = length$	Al
		(ii)	ρ is independent of dimensions of the specimen of the material/AW	B1

(b)
$$R = 1.7 \times 10^{-8} \times 0.08/3.0 \times 10^{-4}$$
 C1
 $R = 4.5(3) \ 10^{-6} \ (\Omega)$ A1

ΑI

1

2

6.	(a)	(i)	Q = It with knowledge of what the symbols mean (1) = $0.050 \times 4.0 \times 3600$ (1) = 720 (C) (1)	3
		(ii)	E = QV with knowledge of what the symbols mean (1) = $720 \times 6.0 = 4320$ (J) (1)	2

(b) chemical (potential) (energy) (1)

(c)	(i)	I = 4.0/48 = 0.5/r (ie by proportion or by finding current) (1)
		$r = 24/4 = 6 (\Omega) (1)$

E = V2t/R with knowledge of what the symbols mean (1) (ii) $= 4.02 \times 2700 / 48(1)$ = 900 (J) (1)3

B1

[4]

[3]

[5]

8.

(iii) 900/4320 = 5/24 = (0.208)(1)

because the p.d. across it (4.5 - 4.0) is known only to 1 sig.fig. (d)

7. M marked at the end of the graph B1 (i) (ii) current is 5 (A) and p.d is 6 (V) C1 $P = VI \setminus p = 6.0 \times 5.0$ (Allow $p = I^2 R$ or $p = V^2 \setminus R$) C1 power = 30 (W)A1 (iii) 1. $V_L = 1.0$ (V) (From the *I*/*V* graph) \ $R_L = 1.0/2.0$ or 0.5 (Ω) M1 $V_R = 1.2 \times 2.0 \setminus R_T = 1.2 + 0.5$ M1 $V = 1.0 + 2.4 \setminus V = 1.7 \times 2.0$ A1 voltmeter reading = 3.4 (V) A0 $Vr = 4.5 - 3.4 (= 1.1 V) \setminus 4.5 = 2.0r + 3.4$ (Possible ecf) 2. C1 $r = \frac{1.1}{2.0}$ $r = 0.55 (\Omega)$ (1.05 Ω scores 0/2 since the lamp is ignored) A1

[9]

[3]

(i)	p.d.: energy transferred per unit charge from electrical form (into other forms, e.g. light/heat)	B1
	e.m.f.: energy transferred per unit charge into electrical form (from other forms, e.g. chemical/mechanical)	B1
(ii)	J C ⁻¹	B1

9. (i) resistance decreases/falls/drops (with increase in temperature) B1 (a) (ii) $100 \pm 10 \ \Omega$ B1 for low temps ΔR is large for $\Delta \theta$ and at high temps ΔR is small for same B1 (iii) $\Delta\theta$; so sensitivity decreases (continuously) from low to high temperatures B1

1

1

[13]

B1
B1
B1
M1
A1
A1

 10. Current is (directly) proportional to potential difference (for a metal conductor)
 M1

 provided the temperature \ (all) physical condition(s) remains constant
 A1

[2]

[10]